GBGI9U07: multimedia document: description and automatic retrieval

5. Deep learning for multimedia indexing and retrieval

Georges Quénot and Philippe Mulhem
Multimedia Information Indexing and Retrieval Group

February 2018

Outline

- Introduction
- Machine learning
- Loss function
- Formal neuron
- Single layer perceptron
- Multilayer perceptron
- Reminders about differential calculus
- Back-propagation
- Learning rate
- Mini-batches
- Convolutional layers
- Pooling, softmax ...

ImageNet Classification 2012 Results

Krizhevsky et al. - 16.4\% error (top-5)
Next best (Pyr. FV on dense SIFT) - 26.2\% error

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

- 1000 visual "fine grain" categories / labels (exclusive)
- 150,000 test images (hidden "ground truth")
- 50,000 validation images
- 1,200,000 training images
- Each training, validation or test image falls within exactly one of the 1000 categories
- Task: for each image in the test set, rank the categories from most probable to least probable
- Metric: top-5 error rate: percentage of images for which the actual category is not in the five first ranked categories
- Held from 2010 to 2015, frozen since 2012

ImageNet Classification 2013 Results

http://www.image-net.org/challenges/LSVRC/2013/results.php Demo: http://www.clarifai.com/

Going deeper and deeper

For comparison, human performance is 5.1% (Russakovsky et al.)

Deep Convolutional Neural Networks

- Decades of algorithmic improvements in neural networks (Stochastic Gradient Descent, initialization, momentum ...)
- Very large amounts of properly annotated data (ImageNet)
- Huge computing power (Teraflops \times weeks): GPU!
- Convolutional networks
- Deep networks (>> 3 layers)
- ReLU (Rectified Linear Unit) activation functions
- Batch normalization
- Drop Out

Supervised learning

- Target function: $f: X \rightarrow Y$

$$
x \rightarrow y=f(x)
$$

$-x$: input object (typically vector)
$-y$: desired output (continuous value or class label)

- X : set of valid input objects
- Y : set of possible output values
- Training data: $S=\left(x_{i}, y_{i}\right)_{(1 \leq i \leq 1)}$
$-I$: number of training samples
- Learning algorithm: $L:(X \times Y)^{*} \rightarrow Y^{X}$

$$
S \rightarrow f=L(S)
$$

- Regression or classification system: $y=f(x)=[L(S)](x)=g(S, x)$

$$
\left((X \times Y)^{*}=\cup_{n \in N}(X \times Y)^{n}\right)
$$

Single-label loss function

- Quantifies the cost of classification error or the "empirical risk"
- Example (Mean Square Error): $E_{S}(f)=\sum_{i=1}^{i=I}\left(f\left(x_{i}\right)-y_{i}\right)^{2}$
- If f depends on a parameter vector θ (L learns θ):

$$
E_{S}(\theta)=\frac{1}{2} \sum_{i=1}^{i=I}\left(f\left(\theta, x_{i}\right)-y_{i}\right)^{2}
$$

- For a linear SVM with soft margin, $\theta=(w, b)$:

$$
E_{S}(\theta)=\frac{1}{2}\|w\|^{2}+C \cdot \sum_{i=1}^{i=I} \max \left(0,1-y_{i}\left(w^{T} x_{i}+b\right)\right)
$$

- The learning algorithm aims at minimizing the empirical risk: $\theta^{*}=\operatorname{argmin} E_{S}(\theta)$

Multi-label loss function

- Predict P labels for each data sample x
- P decision functions : $f=\left(f_{p}\right)_{(1 \leq p \leq P)}$
- Example with f depending on a parameter vector:

$$
E_{S}(\theta)=\frac{1}{2} \sum_{i=1}^{i=I} \sum_{p=1}^{p=P}\left(f_{p}\left(\theta, x_{i}\right)-y_{i p}\right)^{2}=\frac{1}{2} \sum_{i=1}^{i=I}\left(f\left(\theta, x_{i}\right)-y_{i}\right)^{2}
$$

(same as single label case with Euclidean distance between vectors of predictions and vectors of labels)

- $\theta^{*}=\underset{\theta}{\operatorname{argmin}} E_{S}(\theta)$
- The f_{p} functions may take any real value

Formal neural or unit

$$
y=\sum_{j} w_{j} x_{j} \quad z=\frac{1}{1+e^{y}}
$$

linear combination
sigmoid function

Neural layer (all to all)

matrix-vector multiplication
per component operation

Multilayer perceptron (all to all)

Feed forward

- Global network definition: $O=F(W, I)$
($I \equiv x O \equiv y F \equiv f W \equiv \theta$ relative to previous notations)
- Layer values: $\left(X_{0}, X_{1} \ldots X_{N}\right)$ with $X_{0}=I$ and $X_{N}=O \quad\left(X_{n}\right.$ are vectors)
- Vector of all unit parameters:
$W=\left(W_{1}, W_{2} \ldots W_{N}\right)$
(weights by layer concatenated, W_{n} are matrices)
- Feed forward: $X_{n+1}=F_{n+1}\left(W_{n+1}, X_{n}\right)$

Combination of simple functions

Combination of simple functions

- Model parameters: $\theta=\left(a_{0}, a_{1}, b_{1}, a_{2}, b_{2} \ldots\right)$
- Empirical risk on training data: $E(\theta)=\sum_{i}\left(y_{i}-f_{\theta}\left(x_{i}\right)\right)^{2}$
- Find the optimal function by gradient descent on θ
- Any function can do: sigmoids, gaussians, sin/cos ...
- ReLU is simpler and converges faster
- More layers: more complex functions with less parameters

Error back-propagation

- Training set: $S=\left(I_{i}, O_{i}\right)_{(1 \leq i \leq I)}$ input-output samples
- $X_{i, 0}=I_{i}$ and $X_{i, n+1}=F_{n+1}\left(W_{n+1}, X_{i, n}\right)$
- Note: regarding this notation the vector-matrix multiplication counts as one layer and the element-wise non-linearity counts as another one (not mandatory but greatly simplifies the layer modules' implementation)
- Error (empirical risk) on the training set:

$$
E(W)=\sum_{i}\left(F\left(W, I_{i}\right)-O_{i}\right)^{2}=\sum_{i}\left(X_{i, N}-O_{i}\right)^{2}
$$

- Minimization of $E(W)$ by gradient descent

Gradient descent

Error back-propagation

- Minimization of $E_{S}(W)$ by gradient descent:
- The gradient indicate an ascending direction: move in the opposite
- Randomly initialize $W(0)$
- Iterate $W(t+1)=W(t)-\eta \frac{\partial E}{\partial W}(W(t)) \quad \eta=f(t)$ or $\left(\frac{\partial^{2} E}{\partial W^{2}}(W(t))\right)^{-1}$
$-\frac{\partial E}{\partial W}=\left(\frac{\partial E}{\partial W_{1}}, \frac{\partial E}{\partial W_{2}} \ldots \frac{\partial E}{\partial W_{N}}\right)$
- Back-propagation: $\frac{\partial E}{\partial W_{n}}$ is computed by backward recurrence from $\frac{\partial F_{n}}{\partial W_{n}}$ and $\frac{\partial F_{n}}{\partial X_{n-1}} \quad$ applying iteratively $(g \circ f)^{\prime}=\left(g^{\prime} \circ f\right) \cdot f^{\prime}$
- Two derivatives, relative to weight and to data to be considered

Differential of a function scalar input and scalar output

- $f: \mathbb{R} \rightarrow \mathbb{R}: x \rightarrow f(x)$
f is differentiable
- $y=f(x)$
- $f(x+h)-f(x)=f^{\prime}(x) h+o(h) \quad\left(\lim _{h \rightarrow 0} \frac{o(h)}{h}=0\right)$
- $d y=f^{\prime}(x) d x$
- $\frac{d y}{d x} \equiv f^{\prime}(x)$
(notation)
- $d y=\frac{d y}{d x} d x$
- All values are scalar

Differential of a composed function scalar input and scalar output

- $f: \mathbb{R} \rightarrow \mathbb{R}: x \rightarrow f(x)$
f is differentiable
- $y=f(x)$
- $g: \mathbb{R} \rightarrow \mathbb{R}: y \rightarrow g(y)$

g is differentiable

- $z=g(y)$
- $(g \circ f)^{\prime}(x)=\left(g^{\prime} \circ f\right)(x) \cdot f^{\prime}(x)=g^{\prime}(y) \cdot f^{\prime}(x)$
- $d y=\frac{d y}{d x} d x \quad d z=\frac{d z}{d y} d y$
- $d z=\frac{d z}{d y} \cdot \frac{d y}{d x} d x \quad \frac{d z}{d x}=\frac{d z}{d y} \cdot \frac{d y}{d x}$

Differential of a function of a vector vector input and scalar output

- $f: \mathbb{R}^{N} \rightarrow \mathbb{R}: x \rightarrow f(x)$
- $y=f(x)$ f is differentiable
- $f(x+h)-f(x)=\operatorname{grad} f(x) . h+o(\|h\|)$
- $d y=\operatorname{grad} f(x) \cdot d x=\sum_{i=1}^{i=n} \frac{\partial f}{\partial x_{i}}(x) \cdot d x_{i}=\sum_{i=1}^{i=n} \frac{\partial y}{\partial x_{i}} \cdot d x_{i}=\frac{\partial y}{\partial x} . d x$
- $\frac{\partial y}{\partial x} \equiv \frac{\partial f}{\partial x}(x)=\operatorname{grad} f(x) \quad \frac{\partial y}{\partial x_{i}} \equiv \frac{\partial f}{\partial x_{i}}(x)$
(notations)
- $y, d y$ and $f(x)$ are scalars;
- $x, d x$ and h are "regular" (column) vectors;
- $\frac{\partial y}{\partial x}$ is a transpose (row) vector.

Differential of a vector function of a vector vector input and vector output

- $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{P}: x \rightarrow f(x)$
f is differentiable
- $y=f(x) \quad x=\left(x_{i}\right)_{(1 \leq i \leq N)} \quad y=\left(y_{j}\right)_{(1 \leq j \leq P)} \quad f=\left(f_{j}\right)_{(1 \leq j \leq P)}$
- $f(x+h)-f(x)=\operatorname{grad} f(x) . h+o(\|h\|)$
- $d y=\operatorname{grad} f(x) \cdot d x=\frac{\partial f}{\partial x}(x) \cdot d x=\frac{\partial y}{\partial x} . d x$
- $d y_{j}=\sum_{i=1}^{i=n} \frac{\partial f_{j}}{\partial x_{i}}(x) \cdot d x_{i}=\sum_{i=1}^{i=n} \frac{\partial y_{j}}{\partial x_{i}} \cdot d x_{i}$
- $x, d x, y, d y, f(x)$ and h are all "regular" vectors;
- $\frac{\partial y}{\partial x}$ is a matrix (Jacobian of $f: J_{i j}=\left(\frac{\partial y}{\partial x}\right)_{i j}=\frac{\partial y_{j}}{\partial x_{i}}=\frac{\partial f_{j}}{\partial x_{i}}(x)$).

Differential of a composed function vector inputs and vector outputs

- $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{P}: x \rightarrow y=f(x)$
- $g: \mathbb{R}^{P} \rightarrow \mathbb{R}^{Q}: y \rightarrow z=g(y)$
- $x=\left(x_{i}\right)_{(1 \leq i \leq N)} \quad y=\left(y_{j}\right)_{(1 \leq j \leq P)}$
- $d y=\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x} \cdot d x$
- $\frac{\partial z}{\partial x}=\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x} \quad$ (matrix multiplication: non commutative!)
- $x, d x, y, d y, z, d z, f(x)$ and $g(y)$ are all regular vectors;
- $\frac{\partial y}{\partial x}, \frac{\partial z}{\partial y}$ and $\frac{\partial z}{\partial x}$ are matrices (f, g and $g o f$ Jacobians).

Differential of a composed function vector inputs and scalar output

- $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{P}: x \rightarrow y=f(x)$
- $g: \mathbb{R}^{P} \rightarrow \mathbb{R}: y \rightarrow z=g(y)$
- $x=\left(x_{i}\right)_{(1 \leq i \leq N)}$

$$
y=\left(y_{j}\right)_{(1 \leq j \leq P)}
$$

(left row vector \times matrix mult. \rightarrow row vector)

- $z, d z$ and $g(y)$ are scalars;
- $x, d x, y, d y$, and $f(x)$ are regular vectors;
- $\frac{\partial z}{\partial y}$ and $\frac{\partial z}{\partial x}$ are transpose (row) vectors (f and $g o f$ gradients);
- $\frac{\partial y}{\partial x}$ is a matrix (f Jacobian).

Error back-propagation (adapted from Yann LeCun)

Forward pass Data backward pass Param backward pass

Error back-propagation (adapted from Yann LeCun)

Forward pass Data backward pass

Layer module (adapted from Yann LeCun)

Notes: $X_{\text {in }} \equiv X_{n-1}, X_{\text {out }} \equiv X_{n}, W \equiv W_{n}$ and $F \equiv F_{n}$

Layer module (adapted from Yann LeCun)

Layer module (adapted from Yann LeCun)

Gradient back-propagation rule:

The gradient relative to the input (either W or $X_{i n}$) is equal to the gradient relative to the output $\left(X_{\text {out }}\right)$ times the Jacobian of the transfer function
(respectively $\frac{\partial X_{\text {out }}}{\partial W}$ or $\frac{\partial X_{\text {out }}}{\partial X_{\text {in }}}$, left multiplication)

$$
\begin{array}{ll}
\frac{\partial F\left(W, X_{\text {in }}\right)}{\partial X_{\text {in }}} \equiv \frac{\partial X_{\text {out }}}{\partial X_{\text {in }}} & \frac{\partial E}{\partial X_{\text {in }}}=\frac{\partial E}{\partial X_{\text {out }}} \frac{\partial X_{\text {out }}}{\partial X_{\text {in }}} \\
\frac{\partial F\left(W, X_{\text {in }}\right)}{\partial W} \equiv \frac{\partial X_{\text {out }}}{\partial W} & \frac{\partial E}{\partial W}=\frac{\partial E}{\partial X_{\text {out }}} \frac{\partial X_{\text {out }}}{\partial W}
\end{array}
$$

Linear module (adapted from Yann LeCun)

Note: $X_{\text {in }}$ and $X_{\text {out }}$ are regular (column) vectors and W is a matrix while $\partial E / \partial X_{\text {in }}$ and $\partial E / \partial X_{\text {out }}$ are transpose (row) vectors, this is because $\mathrm{d} E=(\partial E / \partial X) \cdot \mathrm{d} X$. $\partial E / \partial W$ is a transpose matrix which is the outer product of the regular and transpose vectors $X_{\text {in }}$ and $\partial E / \partial X_{\text {out }}$.

Pointwise module (adapted from Yann LeCun)

Notes: B is a bias vector on the input. $X_{\text {in }}, X_{\text {out }}$ and B are regular (column) vectors all of the same size while $\partial E / \partial X_{\text {in }}$ and $\partial E / \partial X_{\text {out }}$ and $\partial E / \partial B$ are transpose vectors also of the same size. f is a scalar function applied pointwise on $X_{\text {in }}+B . f^{\prime}$ is the derivative of f and is also applied pointwise. The multiplication by $\left(f^{\prime}\left(X_{i n}+B\right)\right)^{T}$ is also performed pointwise (Hadamard product denoted "o" here).

Autograd variable (PyTorch)

data: X (may be $X_{\text {in }}, W$ or $X_{\text {out }}$)
$\operatorname{grad}: \frac{\partial E}{\partial X} \quad E:$ where backward() was called from grad_fn : $F \mid X=F(\ldots)$: "None" for W or inputs

Autograd backward()

We define $X_{n}=F_{n}\left(W_{n}, X_{n-1}\right)$ for $1 \leq n \leq N$ (or arbitrary network) We end with $E=C\left(X_{N}, O\right)$
We execute a forward pass for a training sample (I, O) We call E.backward() (backward pass from E with $\partial E / \partial E=1$) We get all $\partial E / \partial W_{n}$ (and $\partial E / \partial X_{n}$) for that training sample

Non-linear "activation" functions

- Sigmoid: $z=\frac{1}{1+e^{y}}$
- Hyperbolic tangent: $z=\tanh y$
- Rectified Linear Unit (ReLU): $z=\max (0, y)$
- Programmable ReLU (PReLU) : $z=\max (\alpha y, y)$ with α learned (i.e. $\alpha \subset W$)
- Appropriate non-linear functions leads to better performance and/or faster convergence
- Avoid vanishing / exploding gradients

Convolutional layers

- Alternative to the "all to all" connections
- Preserves the image topology via "feature maps"
- Each layer is a "stack" of features maps
- Each map points is connected to the map points of a neighborhood in the previous layer
- Weights between maps are shared so that they are invariant by translation
- Resolution changes across layers: stride and pooling
- Example: AlexNet

Classical image convolution (2D to 2D)

- Classical image convolution (2D to 2D):

$$
O(i, j)=(K * I)(i, j)=\sum_{(m, n)} K(m, n) I(i-m, j-n)
$$

- Convolutional layer (3D to 3D):
- m and n : within a window around the current location, corresponding to the filter size
- $K(m, n)$: noyau de convolution
- Example: (circular) Gabor filter:

$$
K(m, n)=\frac{1}{2 \pi \sigma^{2}} \cdot e^{-\frac{m^{2}+n^{2}}{2 \sigma^{2}}} \cdot e^{2 \pi i \frac{m \cdot \cos \theta+n \cdot \sin \theta}{\lambda}}
$$

Set of image convolutions (2D to 3D)

- Set of image convolution (2D to 3D):

$$
O(l, i, j)=(K(l) * I)(i, j)=\sum_{(m, n)} K(l, m, n) I(i-m, j-n)
$$

- l : index of the convolution map
- Example: Set of (circular) Gabor filters:
$K(l, m, n)=\frac{1}{2 \pi \sigma_{l}^{2}} \cdot e^{-\frac{m^{2}+n^{2}}{2 \sigma_{l}^{2}}} \cdot e^{2 \pi i \frac{m \cdot \cos \theta_{l}+n \cdot \sin \theta_{l}}{\lambda_{l}}}$
$\left(\sigma_{l}, \lambda_{l}, \theta_{l}\right)_{(1 \leq l \leq L)}$: set of (circular) Gabor filter parameters practical filter size: $\pm 4 \sigma$

Example Gabor Filter Kernels

Example of (elliptic) filters with 8 orientations and 4 scales

Convolutional layers

- Set of image convolution (2D to 3D):

$$
O(l, i, j)=(K(l) * I)(i, j)=\sum_{(m, n)} K(l, m, n) I(i-m, j-n)
$$

- Convolutional layer: multiple maps (planes) both in input and output (3D to 3D, plus bias): $O(l, i, j)=B(l)+\sum_{(k, m, n)} K(k, l, m, n) I(k, i-m, j-n)$
- k and l : indices of the feature maps in the input and output layers
- m and n : within a window around the current location, corresponding to the feature size

Convolutional layers

- Convolutional layer: multiple maps (planes) both in input and output (3D to 3D, plus bias): $O(l, i, j)=B(l)+\sum_{(k, m, n)} K(k, l, m, n) I(k, i-m, j-n)$
- Operation relative to (m, n) : convolution
- Operation relative to (k, l) : matrix multiplication plus bias (equals affine transform)
- Combination of:
- Convolution within the image plane, image topology
- Classical all to all "perpendicularly" to the image plane, no topology
- If image size and filter size = 1: fully connected "all to all"

ImageNet Challenge 2012

[Krizhevsky et al., 2012]

- 7 hidden layers, 650 K units, 60 M parameters (W)
- GPU implementation (50× speed-up over CPU)
- Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

Convolutional layers

- The convolution layer kernel is: $(D+2)$-dimensional for D-dimensional input data, e.g. $D=2$ for still images, $D=3$ for videos or scanner images.
- For color images, the RGB (or YUV or HSV ...) planes directly enter the first layer as a 2D volume of size $3 \times$ width \times height
- There is one unit (neuron) per "pixel" in the output D-dimensional topology
- All these units have the same $(D+2)$-dimensional kernel, i.e. kernels are invariant by translation in the D-dimensional topology (convolution)

AlexNet "conv5" example

- Number of units (output "image" size): output image width (13) \times output image height (13) $=169$
- Number of weights in a unit (= number of weights in a layer): number of input planes (384) \times number of output planes (256) \times filter width (3) \times filter height (3) $=884736$ (bias not included)
- Number of connections:
number of units \times number of weights in a unit $=149520384$

Resolution changes and side effects

- Side (border) effect:
- crop the output "image" relative to the input one and/or
- pad the image if the filter expand outside
- Resolution change (generally reduction):
- Stride: subsample, e.g. compute only one out of N, and/or
- Pool: compute all and apply an associative operator to compute a single value for the low resolution location from the high resolution ones
- Common pooling operators: maximum or average
- Pooling correspond to a separate back-propagation module (as the linear and non-linear parts of a layer)

Learning rate evolution

- $W(t+1)=W(t)-\eta(t) \frac{\partial E}{\partial W}(W(t))$
- Large learning rate: instability
- Small learning rate: very slow convergence
- Variable learning rate: learning rate decay policy
- Most often: step strategy: iterate "constant during a number of epochs, then divide by a given factor"
- Possibly different learning rates for different layers or for different types of parameters, generally with common evolution

Stochastic gradient descent and batch processing

- $E(W)=\sum_{i}\left(F\left(W, I_{i}\right)-O_{i}\right)^{2}=\sum_{i} E_{i}(W)$
- $W(t+1)=W(t)-\eta(t) \frac{\partial E}{\partial W}(t)=W(t)-\sum_{i} \eta(t) \frac{\partial E_{i}}{\partial W}(t)$
- Global update (epoch): sum of per sample updates
- Classical GD: update W globally after all I samples have been processed (1 $\leq i \leq I)$
- Stochastic GD: update W after each processed sample \rightarrow immediate effect, faster convergence
- Batch: update W after a given number (typically between 32 and 256) of processed samples \rightarrow parallelism

Convolutional layers with batchs

- Convolutional layer: multiple maps (planes) both in input and output (3D to 3D, plus bias): $O(l, i, j)=B(l)+\sum_{(k, m, n)} K(k, l, m, n) I(k, i-m, j-n)$
- Batch processing: P input and output at once, each with multiple maps (planes) both in input and output (4D to 4D, p : sample index in a batch): $O(p, l, i, j)=B(l)+\sum_{(k, m, n)} K(k, l, m, n) I(p, k, i-m, j-n)$
- More parallelism: better use of GPU cores.
- Shared kernel and bias: efficient use of cache memory.

Dropout

- Regularization technique
- During training, at each epoch, neutralize a given (typically 0.2 to 0.5) proportion of randomly selected connections
- During prediction, keep all of them with a multiplicative compensating factor
- Avoid concentration of the activation on particular connections
- Much more robust operation
- Faster training, better performance

Softmax

- Normalization of output as probabilities (positive values summing to 1) for the multiclass problem (i.e. target categories are mutually exclusive)
- $z_{i}=\frac{e^{y_{i}}}{\sum_{j} e^{y_{j}}}$
- Not suited for the multi-label case (i.e. target categories are not mutually exclusive)
- Associated loss function is cross-entropy

Yann LeCun recommendations

- Use ReLU non-linearities (tanh and logistic are falling out of favor)
- Use cross-entropy loss for classification
- Use Stochastic Gradient Descent on minibatches
- Shuffle the training samples
- Normalize the input variables (zero mean, unit variance)
- Schedule to decrease the learning rate
- Use a bit of L1 or L2 regularization on the weights (or a combination)
- But it's best to turn it on after a couple of epochs
- Use "dropout" for regularization
- Hinton et al 2012 http://arxiv.org/abs/1207.0580
- Lots more in [LeCun et al. "Efficient Backprop" 1998]
- Lots, lots more in "Neural Networks, Tricks of the Trade" (2012 edition)edited by G. Montavon, G. B. Orr, and K-R Müller (Springer)

Recent trends

- VGG and GoogLeNet (16-19 and 22 layers)
- Residual networks (152 layers with "shortcuts")
- Stochastic depth networks (up to 1202 layers)
- Dense Networks
- Weakly supervised / unsupervised learning
- Generative adversarial networks

GoogLeNet (very deep)

Christian Szegedy et al.: Going Deeper with Convolutions, CVPR 2014.

GoogLeNet (very deep)

(a) Inception module, naïve version

(b) Inception module with dimension reductions

Figure 2: Inception module

Reminder: 1×1 convolutions actually implements an all-to-all between the input and output maps (pixel-wise all-to-all)

Christian Szegedy et al.: Going Deeper with Convolutions, CVPR 2014.

VGG Network (very deep)

Simonyan and Zisserman, Andrew: Very Deep Convolutional Networks for Large-Scale Image Recognition, CVPR 2014.

Residual networks (ultra deep)

He, Zhang, Ren and Sun: Deep Residual Learning for Image Recognition, CVPR 2015

Stochastic depth networks (extremely deep)

ResNet with stochastic depth
"Dropout at the layer level"

Huang et al.: Deep Networks with Stochastic Depth, CVPR 2016

Dense networks

All layers connected to all layers

Huang et al.: Densely Connected Convolutional Networks, CVPR 2016

Dense networks

A deep DenseNet with three dense blocks The layers between blocks are transition layers that change the resolution via convolution and pooling

Huang et al.: Densely Connected Convolutional Networks, CVPR 2016

Weakly / unsupervised learning

- Webly Supervised Learning of Convolutional Networks Xinlei Chen and Abhinav Gupta arXiv:1505.01554, May 2015
- Effective training of convolutional networks using noisy Web images Phong D. Vo, Alexandru Ginsca, Hervé Le Borgne, Adrian Popescu CBMI, June 2015
- Learning from Massive Noisy Labeled Data for Image Classification Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang CVPR, June 2015
- Harnessing Noisy Web Images for Deep Representation Phong D. Vo, Alexandru Ginsca, Hervé Le Borgne, Adrian Popescu arXiv:1512.04785, July 2016
- Learning Visual Features from Large Weakly Supervised Data Armand Joulin, Laurens van der Maaten, Allan Jabri, and Nicolas Vasilache ECCV, Sep. 2016

Weakly / unsupervised learning

- Gather millions (from 1 to 100) of images from the web
- Two main strategies:
- Query an image search engine (e.g. Google) with either target tags or descriptions \rightarrow we can choose the categories
- Download images with associated descriptions from a social network (e.g. Flickr) and extract/select tags from the description \rightarrow we have to do with the available categories
- Filter the results (may use cross-validation predictions)
- Train from noisy data and compensate the loss due to noise with a gain from quantity
- Work on the quality of the category-image association
- Use classifiers or features for transfer learning

Engineered versus learned descriptors

- Classical "classification pipeline"
- Extraction(s) - [aggregation] - optimization(s) classifier(s) - one or more levels of fusion - re-scoring (non exhaustive example)
- Most of the stages are explicitly engineered: the form of descriptors or processing steps has been thought and designed by a skilled engineer or researcher
- Lots of experience and acquired expertise by thousands of smart people over tens of years
- Learning concerns only the classifier(s) stages and a few hyper-parameters controlling the other ones
- Almost everything has been tried
- The more you incorporate, the more you get (at a cost)

Engineered versus learned descriptors

- Deep learning pipeline: MLP with about 8 layers
- Advances in computing power (Tflops): large networks possible
- Algorithmic advance: combination of convolutional layers for the lower stages with all-to-all layers; the topology of the image is preserved in the lower layers with weights shared between the units within a layer
- Algorithmic advances: NN researchers finally find out how to have back-propagation working for MLP with more than three layers
- Image pixels are entered directly into the first layer
- The first (resp. intermediate, last) layers practically compute lowlevel (resp. intermediate level, semantic) descriptors
- Everything is made using a unique and homogeneous architecture
- A single network can be used for detecting many target concepts
- All the level are jointly optimized at once
- Requires huge amounts of training data

Deep Learning and IAR

- Indexing for key-word-based search
- Get an estimate of presence probability for an as large as possible set of concepts / categories
- Map any query to a subset of them
- Score the multimedia samples according to the presence probabilities of the selected ones
- Query by example
- Use last layers values (output or last but one or last but two) as semantic feature vectors (descriptors) for the query and the candidate
- Classical QBE with Euclidean distance or scalar product

